Proposed Implementation of “Non-Physical” Four-Dimensional Polarization Rotations

نویسندگان

  • Gunnar Björk
  • Katarina Stensson
چکیده

Recently one of us proposed a new formalism for modeling electromagnetic wave transformations for coherent communication using a real, four-vector description instead of the conventionally used Jones calculus or the Mueller matrices. The four-vector can then handle all superpositions of two orthogonal polarization basis and two orthogonal time bases (e.g., the inphase and quadrature phase). In developing this formulation it was found that to provide a general but minimal framework for such rotations, it is natural to divide the six generators of 4-D rotations into two groups of three generators, the rightand the left-isoclinic matrices. Of the six transformations these generators define, it was furthermore found that four of them are readily implemented by linear optical components, while two of then were impossible to implement by such means. In this paper we detail the reason these two “unphysical” rotations cannot be implemented with linear optics. We also suggest how they can be implemented, but at a cost in the signal-to-noise ratio, and give this minimum cost.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Keyboard Based Control of Four Dimensional Rotations

Aiming at applications to the scientific visualization of three dimensional simulations with time evolution, a keyboard based control method to specify rotations in four dimensions is proposed. It is known that four dimensional rotations are generally so-called double rotations, and a double rotation is a combination of simultaneously applied two simple rotations. The proposed method can specif...

متن کامل

Design of Photonic Crystal Polarization Splitter on InP Substrate

In this article, we suggested a novel design of polarization splitter based on coupler waveguide on InP substrate at 1.55mm wavelength. Photonic crystal structure is consisted of two dimensional (2D) air holes embedded in InP/InGaAsP material with an effective refractive index of 3.2634 which is arranged in a hexagonal lattice. The photonic band gap (PBG) of this structure is determined using t...

متن کامل

Three-dimensional model for light-induced chaotic rotations in liquid crystals under spin and orbital angular momentum transfer processes.

Liquid crystals interacting with light represent a unique class of soft-matter systems that exhibit various generic nonlinear behaviors, including chaotic rotational dynamics. Despite several experimental observations, complex nematic liquid crystal director rotations in presence of spin and orbital angular momentum transfer processes were left unexplained. We present a self-consistent three-di...

متن کامل

Using a combination of genetic algorithm and particle swarm optimization algorithm for GEMTIP modeling of spectral-induced polarization data

The generalized effective-medium theory of induced polarization (GEMTIP) is a newly developed relaxation model that incorporates the petro-physical and structural characteristics of polarizable rocks in the grain/porous scale to model their complex resistivity/conductivity spectra. The inversion of the GEMTIP relaxation model parameter from spectral-induced polarization data is a challenging is...

متن کامل

A simple approach to the two-dimensional guillotine cutting stock problem

Cutting stock problems are within knapsack optimization problems and are considered as a non-deterministic polynomial-time (NP)-hard problem. In this paper, two-dimensional cutting stock problems were presented in which items and stocks were rectangular and cuttings were guillotine. First, a new, practical, rapid, and heuristic method was proposed for such problems. Then, the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016